Introduction
There are three main penguin species in Antarctica
(Chinstrap, Gentoo, Adelie). You can see them
in the following figure:
In this paper we want to answer the following questions
- How bill depth depends on bill length?
- Which penguin species has the highest body mass?
Methods
The data
The data was collected on islands in Antarctica and published by
Gorman et al. (2014). You can find the original paper with the title
“Ecological sexual dimorphism and environmental variability within a
community of Antarctic penguins (genus Pygoscelis)” in PLoS
ONE
The data is published via the palmerpenguins
R package
which you can find on this
website.
The data contains (among others) the following
measurements:
- bill length
- bill depth
- body mass
- sex
The analysis
We did some plots, calculated some summary statistics and a linear
model of the form \(y = ax + b\)
Results
The mean weight of all penguin species is 4201.754386.
Gentoo penguins have an average weight of 5076 g,
Adelie penguins of 3701 g and Chinstrap penguins of
3733 g.
The figure below shows that Gentoo penguins have the highest
body mass.
ggplot(penguins, aes(x = body_mass_g, fill = species)) +
geom_histogram(alpha = 0.6) +
scale_fill_manual(values = c("darkorange", "purple", "cyan4")) +
theme_minimal()
There is a positive relationship between bill length and bill depth
for all 3 species, as the figure below shows.
ggplot(
data = penguins,
aes(
x = bill_length_mm,
y = bill_depth_mm,
color = species,
shape = species
)
) +
geom_point(size = 3, alpha = 0.8) +
geom_smooth(method = "lm", se = FALSE) +
scale_color_manual(values = c("darkorange", "purple", "cyan4")) +
theme_bw()
In general, it looks like the body characteristics differ between the
sexes but also between the penguin species, as the table below
illustrates:
penguins %>%
filter(!(is.na(sex))) %>%
group_by(species, sex) %>%
summarize(
bill_length = mean(bill_length_mm, na.rm = TRUE),
bill_depth = mean(bill_depth_mm, na.rm = TRUE),
flipper_length = mean(flipper_length_mm, na.rm = TRUE),
body_mass = mean(body_mass_g, na.rm = TRUE)
)
Adelie |
female |
37.25753 |
17.62192 |
187.7945 |
3368.836 |
Adelie |
male |
40.39041 |
19.07260 |
192.4110 |
4043.493 |
Chinstrap |
female |
46.57353 |
17.58824 |
191.7353 |
3527.206 |
Chinstrap |
male |
51.09412 |
19.25294 |
199.9118 |
3938.971 |
Gentoo |
female |
45.56379 |
14.23793 |
212.7069 |
4679.741 |
Gentoo |
male |
49.47377 |
15.71803 |
221.5410 |
5484.836 |
LS0tCnRpdGxlOiAiVGhlIHBlbmd1aW5zIG9mIEFudGFyY3RpY2EiCmF1dGhvcjogIlNlbGluYSBCYWxkYXVmIgpkYXRlOiAiMjUvMy8yMDIyIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgaGlnaGxpZ2h0OiAidGV4dG1hdGUiCiAgICB0aGVtZTogImpvdXJuYWwiCiAgICBkZl9wcmludDogImthYmxlIgogIHdvcmRfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIGRmX3ByaW50OiAia2FibGUiCiAgcGRmX2RvY3VtZW50OgogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICB0b2M6IHRydWUKICAgIGRmX3ByaW50OiAia2FibGUiCiAgb2R0X2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBlY2hvID0gRkFMU0UsICMgY29kZSBpcyBub3QgaW5jbHVkZWQgaW4gb3V0cHV0CiAgd2FybmluZyA9IEZBTFNFLCAjIGRvbid0IHNob3cgd2FybmluZ3MKICBtZXNzYWdlID0gRkFMU0UgIyBkb24ndCBzaG93IG1lc3NhZ2VzCikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocGFsbWVycGVuZ3VpbnMpCmBgYAoKIyBJbnRyb2R1Y3Rpb24KClRoZXJlIGFyZSB0aHJlZSBtYWluIHBlbmd1aW4gc3BlY2llcyBpbiBBbnRhcmN0aWNhICgqQ2hpbnN0cmFwKiwgKkdlbnRvbyosICpBZGVsaWUqKS4gWW91IGNhbiBzZWUgdGhlbSBpbiB0aGUgZm9sbG93aW5nIGZpZ3VyZToKCmBgYHtyIGluY2x1ZGUtcGVuZ3VpbnMsIG91dC53aWR0aD0iNjAlIiwgZmlnLmFsaWduID0gImNlbnRlciIsIGZpZy5jYXA9IklsbHVzdHJhdGlvbiBvZiB0aGUgdGhyZWUgcGVuZ3VpbiBzcGVjaWVzIGJ5IEFsbGlzb24gSG9yc3QifQojIHdpdGggdGhpcyBjb2RlIGNodW5rLCB5b3UgY2FuIGluY2x1ZGUgaW1hZ2VzIGZyb20gYSBmaWxlIGFuZCBoYXZlIG1vcmUgY29udHJvbAojIG92ZXIgdGhlIHNpemUgb2YgaXQKIyBUaGlzIG9ubHkgd29ya3MgaWYgeW91IGhhdmUgdGhlIGZpbGUgc3RvcmVkIGxvY2FsbHkgaW4gYSBmb2xkZXIgY2FsbGVkIC9pbWcKa25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImltZy9sdGVyX3Blbmd1aW5zLnBuZyIpCmBgYAoKSW4gdGhpcyBwYXBlciB3ZSB3YW50IHRvIGFuc3dlciB0aGUgZm9sbG93aW5nIHF1ZXN0aW9ucwoKMS4gIEhvdyBiaWxsIGRlcHRoIGRlcGVuZHMgb24gYmlsbCBsZW5ndGg/CjIuICBXaGljaCBwZW5ndWluIHNwZWNpZXMgaGFzIHRoZSBoaWdoZXN0IGJvZHkgbWFzcz8KCiMgTWV0aG9kcwoKIyMgVGhlIGRhdGEKClRoZSBkYXRhIHdhcyBjb2xsZWN0ZWQgb24gaXNsYW5kcyBpbiBBbnRhcmN0aWNhIGFuZCBwdWJsaXNoZWQgYnkgR29ybWFuIGV0IGFsLiAoMjAxNCkuIFlvdSBjYW4gZmluZCB0aGUgb3JpZ2luYWwgcGFwZXIgd2l0aCB0aGUgdGl0bGUgIkVjb2xvZ2ljYWwgc2V4dWFsIGRpbW9ycGhpc20gYW5kIGVudmlyb25tZW50YWwgdmFyaWFiaWxpdHkgd2l0aGluIGEgY29tbXVuaXR5IG9mIEFudGFyY3RpYyBwZW5ndWlucyAoZ2VudXMgKlB5Z29zY2VsaXMqKSIgaW4gUExvUyBPTkVbXjFdCgpbXjFdOiBwYXBlciBhdmFpbGFibGUgW2hlcmVdKGh0dHBzOi8vZG9pLm9yZy8xMC4xMzcxL2pvdXJuYWwucG9uZS4wMDkwMDgxKS4KClRoZSBkYXRhIGlzIHB1Ymxpc2hlZCB2aWEgdGhlIGBwYWxtZXJwZW5ndWluc2AgUiBwYWNrYWdlIHdoaWNoIHlvdSBjYW4gZmluZCBbb24gdGhpcyB3ZWJzaXRlXShodHRwczovL2FsbGlzb25ob3JzdC5naXRodWIuaW8vcGFsbWVycGVuZ3VpbnMvKS4KCioqVGhlIGRhdGEgY29udGFpbnMgKGFtb25nIG90aGVycykgdGhlIGZvbGxvd2luZyBtZWFzdXJlbWVudHM6KioKCi0gICBiaWxsIGxlbmd0aAotICAgYmlsbCBkZXB0aAotICAgYm9keSBtYXNzCi0gICBzZXgKICAgIC0gICBtYWxlCiAgICAtICAgZmVtYWxlCgojIyBUaGUgYW5hbHlzaXMKCldlIGRpZCBzb21lIHBsb3RzLCBjYWxjdWxhdGVkIHNvbWUgc3VtbWFyeSBzdGF0aXN0aWNzIGFuZCBhIGxpbmVhciBtb2RlbCBvZiB0aGUgZm9ybSAkeSA9IGF4ICsgYiQKCiMgUmVzdWx0cwoKYGBge3IgbWVhbi1wZW5ndWluLXNwZWNpZXMsIGluY2x1ZGU9RkFMU0V9CiMgY2FsY3VsYXRlIHRoZSBtZWFuIGJvZHkgbWFzcyBvZiB0aGUgcGVuZ3VpbiBzcGVjaWVzCmFkZWxpZV9tZWFuIDwtIHBlbmd1aW5zICU+JSBmaWx0ZXIoc3BlY2llcyA9PSAiQWRlbGllIikgJT4lIHB1bGwoYm9keV9tYXNzX2cpICU+JSBtZWFuKG5hLnJtID0gVFJVRSkgCmNoaW5zdHJhcF9tZWFuIDwtIHBlbmd1aW5zICU+JSBmaWx0ZXIoc3BlY2llcyA9PSAiQ2hpbnN0cmFwIikgJT4lIHB1bGwoYm9keV9tYXNzX2cpICU+JSBtZWFuKG5hLnJtID0gVFJVRSkgCmdlbnRvb19tZWFuIDwtIHBlbmd1aW5zICU+JSBmaWx0ZXIoc3BlY2llcyA9PSAiR2VudG9vIikgJT4lIHB1bGwoYm9keV9tYXNzX2cpICU+JSBtZWFuKG5hLnJtID0gVFJVRSkgCmBgYAoKVGhlIG1lYW4gd2VpZ2h0IG9mIGFsbCBwZW5ndWluIHNwZWNpZXMgaXMgYHIgbWVhbihwZW5ndWlucyRib2R5X21hc3NfZywgbmEucm0gPSBUUlVFKWAuICpHZW50b28qIHBlbmd1aW5zIGhhdmUgYW4gYXZlcmFnZSB3ZWlnaHQgb2YgYHIgcm91bmQoZ2VudG9vX21lYW4sMClgIGcsICpBZGVsaWUqIHBlbmd1aW5zIG9mIGByIHJvdW5kKGFkZWxpZV9tZWFuLCAwKWAgZyBhbmQgKkNoaW5zdHJhcCogcGVuZ3VpbnMgb2YgYHIgcm91bmQoY2hpbnN0cmFwX21lYW4sIDApYCBnLgoKVGhlIGZpZ3VyZSBiZWxvdyBzaG93cyB0aGF0ICpHZW50b28qIHBlbmd1aW5zIGhhdmUgdGhlIGhpZ2hlc3QgYm9keSBtYXNzLgoKYGBge3IgaGlzdG9ncmFtLXdlaWdodCwgZmlnLmNhcD0iSGlzdG9ncmFtIG9mIHdlaWdodCBvZiB0aGUgdGhyZWUgcGVuZ3VpbiBzcGVjaWVzLiIsIGZpZy53aWR0aD00LCBmaWcuaGVpZ2h0PTMsIGZpZy5hbGlnbj0nY2VudGVyJywgZWNobz1UUlVFfQpnZ3Bsb3QocGVuZ3VpbnMsIGFlcyh4ID0gYm9keV9tYXNzX2csIGZpbGwgPSBzcGVjaWVzKSkgKwogIGdlb21faGlzdG9ncmFtKGFscGhhID0gMC42KSArCiAgIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoImRhcmtvcmFuZ2UiLCAicHVycGxlIiwgImN5YW40IikpICsKICB0aGVtZV9taW5pbWFsKCkKYGBgCgpUaGVyZSBpcyBhIHBvc2l0aXZlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGJpbGwgbGVuZ3RoIGFuZCBiaWxsIGRlcHRoIGZvciBhbGwgMyBzcGVjaWVzLCBhcyB0aGUgZmlndXJlIGJlbG93IHNob3dzLgoKYGBge3Igc2NhdHRlcnBsb3QtYmlsbCwgZmlnLmNhcD0iU2NhdHRlciBwbG90IHdpdGggcmVncmVzc2lvbiBsaW5lcyBzaG93aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBiaWxsIGxlbmd0aCBhbmQgYmlsbCBkZXB0aCBmb3IgdGhlIDMgcGVuZ3VpbiBzcGVjaWVzIiwgZWNobz1UUlVFfQpnZ3Bsb3QoCiAgZGF0YSA9IHBlbmd1aW5zLAogIGFlcygKICAgIHggPSBiaWxsX2xlbmd0aF9tbSwKICAgIHkgPSBiaWxsX2RlcHRoX21tLAogICAgY29sb3IgPSBzcGVjaWVzLAogICAgc2hhcGUgPSBzcGVjaWVzCiAgKQopICsKICBnZW9tX3BvaW50KHNpemUgPSAzLCBhbHBoYSA9IDAuOCkgKwogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsIHNlID0gRkFMU0UpICsKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygiZGFya29yYW5nZSIsICJwdXJwbGUiLCAiY3lhbjQiKSkgKwogIHRoZW1lX2J3KCkKYGBgCgpJbiBnZW5lcmFsLCBpdCBsb29rcyBsaWtlIHRoZSBib2R5IGNoYXJhY3RlcmlzdGljcyBkaWZmZXIgYmV0d2VlbiB0aGUgc2V4ZXMgYnV0IGFsc28gYmV0d2VlbiB0aGUgcGVuZ3VpbiBzcGVjaWVzLCBhcyB0aGUgdGFibGUgYmVsb3cgaWxsdXN0cmF0ZXM6CgpgYGB7ciBzdW1tYXJ5LXRhYmxlLCBlY2hvPVRSVUV9CnBlbmd1aW5zICU+JSAKICBmaWx0ZXIoIShpcy5uYShzZXgpKSkgJT4lIAogIGdyb3VwX2J5KHNwZWNpZXMsIHNleCkgJT4lIAogIHN1bW1hcml6ZSgKICAgIGJpbGxfbGVuZ3RoID0gbWVhbihiaWxsX2xlbmd0aF9tbSwgbmEucm0gPSBUUlVFKSwKICAgIGJpbGxfZGVwdGggPSBtZWFuKGJpbGxfZGVwdGhfbW0sIG5hLnJtID0gVFJVRSksCiAgICBmbGlwcGVyX2xlbmd0aCA9IG1lYW4oZmxpcHBlcl9sZW5ndGhfbW0sIG5hLnJtID0gVFJVRSksCiAgICBib2R5X21hc3MgPSBtZWFuKGJvZHlfbWFzc19nLCBuYS5ybSA9IFRSVUUpCiAgKQpgYGA=