
Introduction to R
Day 1 - Introduction to Data Analysis with R

Selina Baldauf
Freie Universität Berlin - Theoretical Ecology

March 14, 2025

1Selina Baldauf // Introduction R

R as a calculator
Arithmetic operators

Addition +

Subtraction -

Multiplication *

Division /

Modulo %%

Power ^

Addition
2 + 2
Subtraction
5.432 - 34234
Multiplication
33 * 42
Division
3 / 42
Modulo (Remainder)
2 %% 2
Power
2^2
Combine operations
((2 + 2) * 5)^(10 %% 10)

2Selina Baldauf // Introduction R

R as a calculator
Relational operators

Equal to ==

Not equal to !=

Less than <

Greater than >

Less or equal than <=

Greater or equal than >=

2 == 2
#> [1] TRUE
2 != 2
#> [1] FALSE
33 <= 32
#> [1] FALSE
20 < 20
#> [1] FALSE

3Selina Baldauf // Introduction R

R as a calculator
Logical operators

Not ! !TRUE
#> [1] FALSE
!(3 < 1)
#> [1] TRUE

4Selina Baldauf // Introduction R

R as a calculator
Logical operators

Not !

And &

(3 < 1) & (3 == 3) # FALSE & TRUE = FALSE
#> [1] FALSE
(1 < 3) & (3 == 3) # TRUE & TRUE = TRUE
#> [1] TRUE
(3 < 1) & (3 != 3) # FALSE & FALSE = FALSE
#> [1] FALSE

5Selina Baldauf // Introduction R

R as a calculator
Logical operators

Not !

And &

Or |

(3 < 1) | (3 == 3) # FALSE | TRUE = TRUE
#> [1] TRUE
(1 < 3) | (3 == 3) # TRUE | TRUE = TRUE
#> [1] TRUE
(3 < 1) | (3 != 3) # FALSE | FALSE = FALSE
#> [1] FALSE

6Selina Baldauf // Introduction R

Basic R Syntax

Whitespace does not matter

this
data<-read_csv("data/my-data.csv")

is the same as this

data <-
 read_csv("data/my-data.csv")

There are good practice rules however -> More on that later
RStudio will (often) tell you if something is incorrect

Find on the side of your script

7Selina Baldauf // Introduction R

Comments in R
Reading and cleaning the data -----------------

data <- read_csv("data/my-data.csv")
clean all column headers
(found on https://stackoverflow.com/questions/68177507/)
data <- janitor::clean_names(data)

Analysis --------------------------------------

Everything that follows a # is a comment
Comments are not evaluated
Notes that make code more readable or add information

Comments can be used for
Explanation of code (if necessary)
Include links, names of authors, …
Mark different sections of your code (try Ctrl/Cmd + Shift + R)

8Selina Baldauf // Introduction R

Variables and data types in

9Selina Baldauf // Introduction R

Variables

Store values under meaningful names to reuse them
A variable has a name and value and is created using the assignment operator

radius <- 5
Variables are available in the global environment
R is case sensitive: radius != Radius
Variables can hold any R objects, e.g. numbers, tables with data, …
Choose meaningful variable names

Make your code easier to read

10Selina Baldauf // Introduction R

Variables
create a variable
radius <- 5
use it in a calculation and save the result
pi is a built-in variable that comes with R
circumference <- 2 * pi * radius
change value of variable radius
radius <- radius + 1

If you want to know which value stands behind a variable:

or have a look at the “Environment” pane.

just use the name to print the value to the console
radius

11Selina Baldauf // Introduction R

Atomic data types
There are 6 so-called atomic data types in R. The 4 most important are:
Numeric: There are two numeric data types:

Double: can be specified in decimal (1.243 or -0.2134), scientific notation
(2.32e4) or hexadecimal (0xd3f1)
Integer: numbers that are not represented by fraction. Must be followed by an L
(1L, 2038459L, -5L)

Logical: only two possible values TRUE and FALSE (abbreviation: T or F - but better
use non-abbreviated form)
Character: also called string. Sequence of characters surrounded by quotes
("hello" , "sample_1")

12Selina Baldauf // Introduction R

Vectors
Vectors are data structures that are built on top of atomic data types.
Imagine a vector as a collection of values that are all of the same data type.

Image from Advanced R book

13Selina Baldauf // Introduction R

https://adv-r.hadley.nz/vectors-chap.html#atomic-vectors

Creating vectors
Use the function c() to combine values into a vector
lgl_var <- c(TRUE, TRUE, FALSE)
dbl_var <- c(2.5, 3.4, 4.3)
int_var <- c(1L, 45L, 234L)
chr_var <- c("These are", "just", "some strings")

There are many more options to create vectors

seq() to create a sequence of numbers
: creates a sequence of numbers with an increment of 1 (e.g. 1:10)
rep() ro repeat values

…

14Selina Baldauf // Introduction R

Working with vectors

15Selina Baldauf // Introduction R

Working with vectors
Let’s create some vectors to work with.
list of 10 biggest cities in Europe
cities <- c("Istanbul", "Moscow", "London", "Saint Petersburg", "Berlin",
 "Madrid", "Kyiv", "Rome", "Bucharest", "Paris")

population <- c(15.1e6, 12.5e6, 9e6, 5.4e6, 3.8e6, 3.2e6, 3e6, 2.8e6, 2.2e6, 2.1e6)

area_km2 <- c(2576, 2561, 1572, 1439,891,604, 839, 1285, 228, 105)

We can check the length of a vector using the length() function:
length(cities)
#> [1] 10

16Selina Baldauf // Introduction R

https://en.wikipedia.org/wiki/List_of_European_cities_by_population_within_city_limits

Working with vectors
Divide population and area vector to calculate population density in each city:
population / area_km2
#> [1] 5861.801 4880.906 5725.191 3752.606 4264.871 5298.013 3575.685
#> [8] 2178.988 9649.123 20000.000

The operation is performed separately for each element of the two vectors and the
result is a vector.
Same, if a vector is divided by vector of length 1 (i.e. a single number). Result is
always a vector.
mean_population <- mean(population) # calculate the mean of population vector
mean_population
#> [1] 5910000
population / mean_population # divide population vector by the mean
#> [1] 2.5549915 2.1150592 1.5228426 0.9137056 0.6429780 0.5414552 0.5076142
#> [8] 0.4737733 0.3722504 0.3553299

17Selina Baldauf // Introduction R

Working with vectors
We can also work with relational and logical operators
population > mean_population
#> [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

The result is a vector containing TRUE and FALSE, depending on whether the city’s
population is larger than the mean population or not.

Logical and relational operators can be combined
population larger than mean population OR population larger than 3 million
population > mean_population | population > 3e6
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

18Selina Baldauf // Introduction R

Working with vectors
Check whether elements occur in a vector:
cities == "Istanbul"
#> [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

The %in% operator checks whether multiple elements occur in a vector.
for each element of cities, checks whether that element is contained in to_check
to_check <- c("Istanbul", "Berlin", "Madrid")
cities %in% to_check # same as cities %in% c("Istanbul", "Berlin", "Madrid")
#> [1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

%in% always returns a vector of the same length as the vector on the left side
for each element of to_check, check whether that element is contained in cities
to_check %in% cities
#> [1] TRUE TRUE TRUE

19Selina Baldauf // Introduction R

Indexing vectors
You can use square brackets [] to access specific elements from a vector.
The basic structure is:

vector [vector of indexes to select]

cities[5]
#> [1] "Berlin"

the three most populated cities
cities[1:3] # same as cities[c(1,2,3)]
#> [1] "Istanbul" "Moscow" "London"

the last entry of the cities vector
cities[length(cities)] # same as cities[10]
#> [1] "Paris"

20Selina Baldauf // Introduction R

Indexing vectors
Change the values of a vector at specified indexes using the assignment operator <-
Imagine for example, that the population of

Istanbul (index 1) increased to 20 Million
Rome (index 8) changed but is unknown
Paris (index 10) decreased by 200,000

Update Istanbul (1) and Rome(8)
population[c(1, 8)] <- c(20e6, NA) # NA means missing value
Update Paris (10)
population[10] <- population[10] - 200000

Look at the result
population
#> [1] 20000000 12500000 9000000 5400000 3800000 3200000 3000000 NA
#> [9] 2200000 1900000

21Selina Baldauf // Introduction R

Indexing vectors
You can also index a vector using logical tests. The basic structure is:

vector [logical vector of same length]

mega_city <- population > mean_population
mega_city
#> [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Which are the mega cities?

Return only the cities for which the comparison of their population against the mean
population is TRUE

cities[mega_city] # or short: cities[population > mean_population]
#> [1] "Istanbul" "Moscow" "London"

22Selina Baldauf // Introduction R

Summary
Introduction to R

23Selina Baldauf // Introduction R

Summary I

Variables have a name and a value and are created using the assignment operator
<-, e.g.

Vectors are a collection of values of the same data type:
character ("hello")
numeric: integer (23L) and double (2.23)

logical (TRUE and FALSE)

radius <- 5

24Selina Baldauf // Introduction R

Summary II
Create vectors

combine objects into vector
c(1,2,3)

create a sequence of values
seq(from = 3, to = 6, by = 0.5)
seq(from = 3, to = 6, length.out = 10)
2:10

repeat values from a vector
rep(c(1,2), times = 2)
rep(c("a", "b"), each = 2)

25Selina Baldauf // Introduction R

Summary III
Indexing and subsetting vectors

By index
v[3]
v[1:4]
v[c(1,5,7)]

Logical indexing with 1 vector
v[v > 5]
v[v != "bird" | v == "rabbit"]
v[v %in% c(1,2,3)] # same as v[v == 1 | v == 2 | v == 3]

Logical indexing with two vectors of same length
v[y == "bird"] # return the value in v for which index y == "bird"
v[y == max(y)] # return the value in v for which y is the maximum of y

26Selina Baldauf // Introduction R

Summary IV
Working with vectors

length
length(v)
rounding numbers
round(v, digits = 2)
sum
sum(v)
mean
mean(v)
median
median(v)
standard deviation
sd(v)
find the min value
min(v)
find the max value

27Selina Baldauf // Introduction R

Now you
Task (30 min)

Working with vectors
Find the task description here

28Selina Baldauf // Introduction R

https://selinazitrone.github.io/intro-r-data-analysis/sessions/02_intro-r.html

