Introduction to R

Day 1 - Infroduction to Data Analysis with R

Selina Baldauf

Freie Universitat Berlin - Theoretical Ecology

March 14, 2025

Selina Baldauf // Introduction R

R as a calculator

Arithmetic operators

Addition + # Addition
) 2 + 2
Subtraction - # Subtraction
. 1. . 5.432 - 34234

MU|TIp|IcaTIOn i # Multiplication
Division / 33 742

Division
Modulo %% 3/ 42

Modulo (Remainder)
POWGF n 2 %% 2

Power

272

Combine operations
((2 + 2) * 5)7(10 %% 10)

Selina Baldauf // Introduction R

R as a calculator

Relational operators

Equal to —— 2 == 2

#> [1] TRUE
Not equal to = 2 1= 2

#> [1] FALSE
Less than < e
Greater than > #> [1] FALSE

20 < 20
Less or equal than <= #> [1] FALSE
Greater or equal than >=

Selina Baldauf // Introduction R

R as a calculator

Logical operators

Not I | TRUE
#> [1] FALSE

(3 < 1)
#> [1] TRUE

Selina Baldauf // Introduction R

R as a calculator

Logical operators

Not I (3 < 1) & (3 == 3) # FALSE & TRUE = FALSE
#> [1] FALSE

And & (1 < 3) & (3 == 3) # TRUE & TRUE = TRUE
#> [1] TRUE

(3 < 1) & (3 != 3) # FALSE & FALSE = FALSE
#> [1] FALSE

Selina Baldauf // Introduction R

R as a calculator

Logical operators

Not I (3 < 1) | (3 ==3) # FALSE | TRUE = TRUE
#> [1] TRUE

And & (1 < 3) | (3 ==23)# TRUE | TRUE = TRUE
#> [1] TRUE

Or |
(3 <1) | (3 !'=3) # FALSE | FALSE = FALSE
#> [1] FALSE

Selina Baldauf // Introduction R

Basic R Syntax

e Whitespace does not matter

this
data<-read csv("data/my-data.csv")

is the same as this

data <-
read_csv("data/my-data.csv")

e There are good practice rules however -> More on that later
e RStudio will (often) tell you if something is incorrect

® Find @ on the side of your script

Selina Baldauf // Introduction R

Comments in R

Reading and cleaning the data -----------------

data <- read csv("data/my-data.csv")

clean all column headers

(found on https://stackoverflow.com/questions/68177507/)
data <- janitor::clean_names(data)

Analysis -------------ccccemmeee e

e Everything that follows a # is a comment
e Comments are not evaluated

e Notes that make code more readable or add information

e Comments can be used for
m Explanation of code (if necessary)
® |nclude links, names of authors, ...

» Mark different sections of your code (@ try ctrl/cmd + Shift + R)

Selina Baldauf // Introduction R

Variables and data types in @®

Variables

Store values under meaningful names to reuse them

A variable has a ‘'name and value and is created using the assignment operator

Variables are available in the global environment

R is case sensitive: radius = Radius

Variables can hold any R objects, e.g. numbers, tables with data, ...
Choose meaningful variable names

= Make your code easier to read

Selina Baldauf // Introduction R

10

Variables

create a variable

radius <- 5

use it in a calculation and save the result
pi is a built-in variable that comes with R
circumference <- 2 * pi * radius

change value of variable radius

radius <- radius + 1

If you want to know which value stands behind a variable:

just use the name to print the value to the console
radius

or have a look at the “Environment” pane.

Selina Baldauf // Introduction R 11

Atomic data types

There are 6 so-called atomic data types in R. The 4 most important are:

Numeric: There are two numeric data types:

® Double: can be specified in decimal (1.243 or -0.2134), scientific notation
(2.32e4) or hexadecimal (exd3f1)

e Integer: numbers that are not represented by fraction. Must be followed by an L
(1L, 2038459L, -5L)

Logical: only two possible values TRUE and FALSE (abbreviation: T or F - but better
use non-abbreviated form)

Character: also called string. Sequence of characters surrounded by quotes
("hello" , "sample 1")

Selina Baldauf // Introduction R 12

Vectors

Vectors are data structures that are built on top of atomic data types.

Imagine a vector as a collection of values that are all of the same data type.

Vector

f

Atomic

T

Numeric

AN

Logical Integer Double Character

Image from Advanced R book

Selina Baldauf // Introduction R

https://adv-r.hadley.nz/vectors-chap.html#atomic-vectors

Creating vectors

Use the function c() to combine values into a vector

1lgl var <- c(TRUE, TRUE, FALSE)

dbl var <- c(2.5, 3.4, 4.3)

int_var <- c(1L, 45L, 234L)

chr_var <- c("These are", "just", "some strings")

There are many more options to create vectors

® seq() to create a sequence of numbers
e : creates a sequence of numbers with an increment of 1 (e.g. 1:10)

® rep() ro repeat values

Selina Baldauf // Introduction R

Working with vectors

Working with vectors

Let's create some vectors to work with.

list of 10 biggest cities in Europe
cities <- c("Istanbul", "Moscow", "London", "Saint Petersburg", "Berlin",
"Madrid", "Kyiv", "Rome", "Bucharest", "Paris")

population <- c(15.1e6, 12.5e6, 9e6, 5.4e6, 3.8e6, 3.2e6, 3e6, 2.8e6, 2.2e6, 2.1eb6)

area_km2 <- c(2576, 2561, 1572, 1439,891,604, 839, 1285, 228, 105)

We can check the length of a vector using the length() function:

length(cities)
#> [1] 10

Selina Baldauf // Introduction R

16

https://en.wikipedia.org/wiki/List_of_European_cities_by_population_within_city_limits

Working with vectors

Divide population and area vector to calculate population density in each city:

population / area_km2
#> [1] 5861.801 4880.906 5725.191 3752.606 4264.871 5298.013 3575.685
#> [8] 2178.988 9649.123 20000.000

The operation is performed separately for each element of the two vectors and the
result is a vector.

Same, if a vector is divided by vector of length 1 (i.e. a single number). Result is
always a vector.

mean_population <- mean(population) # calculate the mean of population vector
mean_population

#> [1] 5910000

population / mean_population # divide population vector by the mean

#> [1] 2.5549915 2.1150592 1.5228426 0.9137056 0.6429780 0.5414552 0.5076142
#> [8] 0.4737733 0.3722504 0.3553299

Selina Baldauf // Introduction R

17

Working with vectors

We can also work with relational and logical operators

population > mean_population
#> [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

The result is a vector containing TRUE and FALSE, depending on whether the city’s
population is larger than the mean population or not.

Logical and relational operators can be combined

population larger than mean population OR population larger than 3 million
population > mean_population | population > 3e6
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

Selina Baldauf // Introduction R

18

Working with vectors

Check whether elements occur in a vector:

cities == "Istanbul"
#> [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

The %in% operator checks whether multiple elements occur in a vector.

for each element of cities, checks whether that element is contained in to_check
to _check <- c("Istanbul", "Berlin", "Madrid")

cities %in% to_check # same as cities %in% c("Istanbul", "Berlin", "Madrid")

#> [1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

%in% always returns a vector of the same length as the vector on the left side

for each element of to_check, check whether that element is contained in cities
to_check %in% cities
#> [1] TRUE TRUE TRUE

Selina Baldauf // Introduction R 19

Indexing vectors

You can use square brackets [] to access specific elements from a vector.
The basic structure is:

vector [vector of indexes to select |

cities[5]
#> [1] "Berlin"

the three most populated cities
cities[1:3] # same as cities[c(1,2,3)]
#> [1] "Istanbul” "Moscow" "London"

the last entry of the cities vector
cities[length(cities)] # same as cities[10]
#> [1] "Paris"

Selina Baldauf // Introduction R

Indexing vectors

Change the values of a vector at specified indexes using the assignment operator < -

Imagine for example, that the population of

e |stanbul (index 1) increased to 20 Million

e Rome (index 8) changed but is unknown

e Paris (index 10) decreased by 200,000

Update Istanbul (1) and Rome(8)

population[c(1, 8)] <- c(20e6, NA) # NA means missing value
Update Paris (10)

population[10] <- population[16] - 200000

Look at the result

population

#> [1] 20000000 12500000 9000000 5400000 3800000 3200000 3000000 NA
#> [9] 2200000 1900000

Selina Baldauf // Introduction R

21

Indexing vectors

You can also index a vector using logical tests. The basic structure is:

vector [logical vector of same length]

mega_city <- population > mean_population
mega_city
#> [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Which are the mega cities?

cities[mega_city] # or short: cities[population > mean_population]
#> [1] "Istanbul" "Moscow" "London"

Return only the cities for which the comparison of their population against the mean
population is TRUE

Selina Baldauf // Introduction R

22

Summary

Introduction to R

Summary I

e Variables have a name and a value and are created using the assignment operator
<-, eqg.

radius <- 5

e \Vectors are a collection of values of the same data type:
m character ("hello")
® numeric: integer (23L) and double (2.23)

= |ogical (TRUE and FALSE)

Selina Baldauf // Introduction R

24

Summary II

Create vectors

combine objects into vector
c(1,2,3)

create a sequence of values

seq(from = 3, to = 6, by = 0.5)
seq(from = 3, to = 6, length.out = 10)
2:10

repeat values from a vector
rep(c(1,2), times = 2)
rep(c("a", "b"), each = 2)

Selina Baldauf // Introduction R

25

Summary III

Indexing and subsetting vectors

By index
v[3]

v[1l:4]
v[c(1,5,7)]

Logical indexing with 1 vector

v[iv > 5]

v[v != "bird" | v == "rabbit"]

v[v %in% c(1,2,3)] # same as v[v == 1 | v == 2 | v == 3]

Logical indexing with two vectors of same length
vy == "bird"] # return the value in v for which index y == "bird"
vly == max(y)] # return the value in v for which y is the maximum of y

Selina Baldauf // Introduction R

26

Summary IV

Working with vectors

length

length(v)

rounding numbers
round(v, digits = 2)
sum

sum(Vv)

mean

mean(v)

median

median(v)

standard deviation
sd(v)

find the min value
min(v)

find the max value

Selina Baldauf // Introduction R

27

Now you

Working with vectors

Find the task description here

https://selinazitrone.github.io/intro-r-data-analysis/sessions/02_intro-r.html

